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LETTER TO THE EDITOR 

Instantons in superfluid 3He 

D Bailint and A Love$ 
i. School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
BN19QH, UK 
j Department of Physics, Bedford College, University of London, Regent’s Park, London 
NW1, UK 

Received 14 April 1980 

Abstract. Using a model quantum mechanical free energy functional, the nucleation rate of 
superfluid 3He from the A phase to the B phase is discussed. 

There has been a great deal of recent interest in the use of finite action solutions of field 
equations continued to imaginary time (instantons), to investigate quantum mechanical 
tunnelling between degenerate ground states of quantum field theories. (For reviews 
see for example Coleman (1977) and Jackiw (1977).) There has also been interest in 
similar solutions of the field equations when the field theory possesses a metastable state 
and a stable ground state. These solutions (which have been referred to as ‘bounces’ by 
Coleman (1977)) may be used to calculate the nucleation rate from the metastable state 
to the stable state. These recent calculations are a rediscovery of earlier work in the 
context of condensed stdte physics by Langer (1969), Lifshitz and Kagan (1972) and 
Iordanskii and Finkel’shtein (1972), where the ‘bounce’ appeared as a critical bubble 
for nucleation. It has been suggested by Leggett (1978) that these ideas may be useful in 
the study of nucleation in superfluid 3He. 

We wish to discuss the formation of a bubble of stable phase within the metastable 
phase which is just large enough to expand and convert all the metastable phase to 
stable phase (a critical bubble). It will be important at sufficiently low temperatures to 
consider the influence of quantum mechanical fluctuations on the formation of the 
critical bubble. A priori, we expect the critical bubble to be formed by thermal 
fluctuations at sufficiently high temperatures, by quantum mechanical fluctuations at 
zero temperature, and by thermally assisted quantum fluctuations at intermediate 
temperatures. To study these quantum fluctuations we require a quantum free energy 
functional, such as has been developed to study quantum mechanical phase transitions 
at zero temperature in the case of magnetic systems (Hertz 1976, Young 1975). A 
quantum free energy functional may be derived for superfluid 3He by a generalisation 
of a technique which has been used by Kleinert (1977, 1978) to obtain the usual 
(non-quantum) Ginzburg-Landau free energy functional. (This technique is very 
similar to the transformation devised by Stratonovich (1957) and Hubbard (1959) in a 
different context.) We start from the partition function in terms of the fundamental 
fields for the 3He atoms. 

= g*+w exp(-S[*l/h), (1) I 
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where 

In equation (1) the path integral is over fields periodic on the interval - $P h S T < $@ h, 
p is the chemical potential, and only the part of the interaction which produces p-wave, 
spin-triplet pairing has been retained. If we add to S [ $ ]  the term 

J J  

and perform the path integrals over A and A' as well as $ and $', we merely multiply Z 
by a constant. (Because no derivatives of Aai occur, Aai is not an independent field.) 
Adding A S  to S[$] eliminates the terms quartic in 4, and the Gaussian path integral for 
$ may be performed. The resulting operator determinant may be evaluated order by 
order in Aai. The result of this calculation is to recast the partition function in terms of 
Aai. Keeping up to quartic order in Aai, and neglecting order Tc/ TF, we find 

Z = 9 A : i 9 A a i  exp( - S[A]/h), I 
where 

! O h  

- ; p h  
S[A] = I d.r [ d3x Zee(A) ,  

and 

Z e e ( A ) = Z ~ + Z s + Z ,  

with 

and 

In equation (7)  we allow strong coupling connections to the P i  so that 
PI : P z :  P 3 :  P 4 : P s  = -1 : 2 + S  : 2 :  2 - 8  : -2-8 with 

P 3  = (21/80)5(3)(trk~r,)-~(dn/de), (10) 

where S is temperature and pressure dependent. In equation (8) 

and in equation (9) there is a summation over Matsubara frequencies 

u p  = P d P h  
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with p an even integer, and the Fourier transform 

Pti (2~)~A, i (x ,  T )  = d3k exp( - i o p T  + ik .  x)Aai(k, up) (13) 
p even 

has been made. If equation (9) is rewritten in (x, T )  space, the result is non-local, that is 
of the form 
l @ f i / 2  ,a 1 8 f i / 2  d T l @ f i / 2  1 

d7 d3xL&= dT’ d3x{A;i(x, T ) K ( T ,  7’)Aai(x, 7’)). (14) 
- o w  -pfi/2 

If we retain only the lwpl term in equation (9), as might be appropriate in a Ginzburg- 
Landau expansion, 

2 
T dn T ( T ‘ - T )  

K ( T ,  7’) = -- -cosec [ Pch 1, 
16pcti de 

To obtain a model effective Lagrangian which is local, we approximate K(T ,  7’) by the 
second derivative of a delta function. Then 

We wish to discuss the formation of a critical bubble of B phase in a metastable A 
phase using the model effective Lagrangian of equations (6), (7), (8) and (16). In 
general the wall of such a bubble may involve many components of the 3 x 3 order 
parameter Aai varying. However, in what follows we use the following simple form of 
order parameter. 

with O s  a s 1 and A(A) and A(B) the magnitudes of the A and B phase order 
parameters in the given conditions of temperature and pressure. (Kaul and Kleinert 
(1980) have used such a form to calculate the surface tension at a planar interface 
between 3He A and 3He B and have obtained good agreement with experiment.) 
Substituting (17) into (6), (7), (8) and (16) leads to an effective action of the form 

with 

where 

F(B) and F(A) are the free energies of the B and A phases and A, a, CI, c2, and c3 are 
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pure numbers of order 1. With the model we have used we find 

8( 2-s  ) ‘ I 2  
5 + s  10+26 

using the values (10) for PI,  . . . P s .  At the A-B transition S =a, so we expect A = 3.3 .  
In the same model we find 

In general A2(B)/A2(A) = (6 - 3 S ) / 5  + 8, so near the transition we expect uc1c2c3 = 
0.50. It is convenient to absorb a factor apCfi/27r into the definition of T and factors 
clto,  c2tO and c 3 t 0  into the definitions of x ,  y, z to obtain dimensionless variables. Then, 

with 

PO = aPc/2.rr 
and 

and f ( a )  as in equation (20). 

now 
The nucleation rate per unit volume of the metastable A phase into the B phase is 

I = Io exp ( -  S [ & ] / h )  (25) 

where G(x, T )  is the solution of the Euler-Lagrange equations corresponding to the 
critical bubble, and lo is some fundamental rate (Langer 1969, Lifshitz and Kagan 1972, 
Coleman 1977 and references therein). We concentrate on the exponential factor in 
equation (21) which is more sensitive to the form of the critical bubble than Io. Even at 
T = 0 it is not possible to solve the Euler-Lagrange equations exactly for the quantum 
critical bubble (see Coleman 1977). In order to estimate the quantum bubble at finite T 
we use the following parametrisation, in which R is related to the radius of the critical 
bubble, and A-’ to the thickness of the bubble wall: 

for R s p  s R +A-’  

for p > R + A - ’  
E ( r ,  T ) =  1 f o r p < R  

16 A ( p  - R,  

where 
p = (r2+7z)1 /2 .  
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If we consider bubbles of negligible thickness, then for p /2p0>  R discrete bubbles in T 

space are periodically repeated, and for p / 2 p o < R  the bubbles have coalesced in T 

space (see figures 1 and 2) .  We shall refer to the temperature, TB, at which p /2p0  = R 
as the ‘bubble coalescence’ temperature. When (26) is inserted in (22), the thin-wall 
approximation R >>A-’ is made, and the resulting effective action is made stationary 
under variations of A and R, we find for T < TB, 

A = [ A ( T c -  T)/120Tc]’/’, (28) 

R =24TcA/(Tc-  T ) q  
and 

2 4 r 2  A’ T,  j-::z:o dT [ d3x a(&) = - - - 25 q3  T c - T ’  

7 

t 

Figure 1. Critical bubble for T < TB. Figure 2. Critical bubble for T > TB, 

For T > TB, the results are that A is given by equation (28) as before, R is the solution of 

T c - T  b b 
- qR[ 2 (R’ - b’)”’ + sin-’(b/R)] = 2 A [  R 7 (R - b’)”’ + 3 sin-’(b/R)], (3 1) 4 Tc 
and 

q[$b(R2-b2)3/2+bR2(R2-b2)1’2+R4 sin-’(b/R)] [-:/Tio d~ [ d3x Z ( E )  = - - 
16Tc 
T,-  T 

+ 2AR [b (R2 - 6’)”’ + R ’ sin-l(b/R)], ( 3 2 )  

b = P / W o .  ( 3 3 )  
where 

The thermal critical bubble & ( r ) ,  which has no T dependence, may be estimated 
using the parameterisation 

for R s r s R +A-’  
f o r r < R  
forr>R+A-’. ( 3 4 )  
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In this case a similar calculation yields 

R = 16T,A/(Tc- T ) T ,  

where A is still given by (28) ,  and 

(35)  

Comparing (30)  and (36)  we see that S[G] = S [ 6 ]  when 

-- /3 8 1 ~ [  AT,  
2/30 167 3 0 ( T c - T )  (37)  

At the temperature, T T H ,  given by equation (37)  the nucleation rates due to quantum 
and thermal bubbles are equal. For T > T T H ,  nucleation proceeds by thermal bubbles, 
and for T < T T H  by quantum bubbles. Noticing that the ‘bubble coalescence’ tempera- 
ture T B  is given by 

it follows (assuming that A is temperature independent) that 
1/2 -=-( T B  2 7 ~  Tc-TB ) , 

TTn 64 T,-TTH (39)  

which implies that TB > TTH. Thus, when quantum bubbles are responsible for nuclea- 
tion the effective action is always given by (30) ,  and never by (32) .  (We have checked 
that higher periodicity of the quantum bubble in r leads to a smaller nucleation rate at 
those temperatures at which quantum nucleation is more important than thermal 
nucleation.) 

Taking 

near the polycritical point, we estimate from (37) ,  taking A = 3.3, that 

TTH == 0.16 Tc. (41)  
Since the pre-exponential factor Io in equation (25)  is of order (/3ch)-’&3 ( s [ G ] / 2 ~ h ) ~  
(see Coleman 1977 and references therein), we also estimate 

(42)  I = 1 0 - 2 ~ 1 0 ~  cm-3 s - l ,  

This is very much smaller than the experimental nucleation rate. To obtain the 
experimental rate, S [ E ]  would need to be three orders of magnitude smaller. This could 
happen if the constant A,  which is a measure of the barrier between the A phase and B 
phase minima, were much smaller than we have estimated. However, it is hard to see 
how this could be compatible with the experimental success of estimates of the surface 
tension at a 3He A to 3He B boundary (see for example Kaul and Kleinert 1980). 

Another possibility is that the constants a, c1, c2, c3 are not in fact of order unity. 
Suppose, for some reason, that the coefficient of ( d c ~ / d r ) ~  in (19)  were ( a ‘ & & / 2 ~ ) ~  with 
a’ of order unity. This would have the effect of multiplying a, and thereby S[cY], by a 
factor pF/pc= lop3. We can think of no reason why this should be so. Alternatively, it 
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might be that replacing the non-local K ( T ,  7’) of equation (15) by the local form of 
equation (16) has led to a gross overestimate of the energy of quantum fluctuations. 
Finally, it may be that dissipation through coupling to the normal fluid is playing an 
important role. (Leggett (1978) has stressed this danger.) Certainly, if the charac- 
teristic frequency of excitations is comparable with the characteristic frequency for 
tunnelling across the barrier between the A phase and the B phase, then this effect is 
important. A completely new formalism would then be required to calculate the 
nucleation rate, rather than the calculation based on the imaginary part of the free 
energy adopted here (and by Langer 1967, Lifshitz and Kagan 1972 and subsequent 
authors). 
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